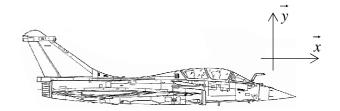


PARTIE E

Relation entre distance parcourue et vitesse de vol

Les études précédentes ont permis de déterminer un certains nombre de caractéristiques techniques du Rafale; nous allons maintenant les exploiter pour déterminer d'un point de vue très pratique les conditions dans lesquelles un Rafale peut se rendre d'un point à un autre dans le monde.

Les conditions en question sont :


- la durée de vol (pour aller d'un point A à un point B donnés) et donc la vitesse,
- la nécessité (ou non selon le cas) d'envisager un ravitaillement (en vol ou au sol),
- où le ravitaillement doit avoir lieu s'il est nécessaire.

<u>Hypothèse</u>:

- ⇒ L'avion réalise des trajets en MRU.
- \Rightarrow L'atmosphère dans laquelle l'avion évolue est à $T_{atm} = 20 \, ^{\circ}C$ et à $p_{atm} = 1 \, bar$.

<u>Données</u>: (à utiliser quelles que soient les valeurs trouvées dans les parties précédentes)

- \Rightarrow Surface « maître-couple » : $S = 40.76 \text{ m}^2$
- \Rightarrow Coefficient de traînée : $C_x = 0.131$
- **Q1** Mener l'étude de statique pour <u>mettre en relation</u> l'intensité de la poussée totale F générée par les deux réacteurs avec la vitesse v.
 - \bigcirc \rightarrow On isole: l'avion.
 - \bigcirc \rightarrow BAME:
 - Ecrire les vecteurs et les tracer sur la figure ci-contre.
 - $3 \rightarrow PFS$:

- **Q2** Exprimer la poussée F en fonction de l'énergie disponible E (disponible grâce au carburant) et de la distance d à parcourir.
 - L'expression demandée est celle qui a été établie dans la partie C (Q5).
- **Q3** Exprimer la poussée F en fonction de la masse de carburant m_C embarquée et de la distance d à parcourir.
- **Q4** Exprimer la distance d en fonction de la masse de carburant m_C et de la vitesse v.
 - Utiliser les expressions trouvées aux Q2 et Q3.

Les questions suivantes visent à manipuler un peu la relation établie à la Q4.

Q5 – Rappeler la masse de carburant avec le réservoir interne seul et avec les deux réservoirs (interne et externe.

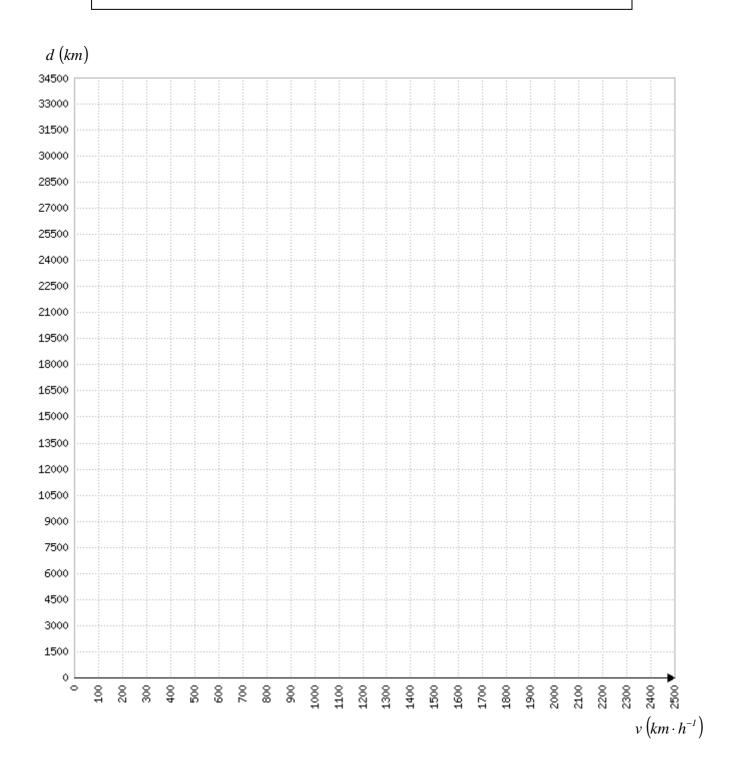
Q6 – Rappeler en $km \cdot h^{-1}$ et convertir en $m \cdot s^{-1}$ les vitesses maximale v_{max} de l'avion (encart page 1 de la présentation ou annexes) et minimale v_{min} (correspondant à la vitesse de décollage).

Q7 – Calculer en km la distance d parcourue pour que l'avion épuise <u>toute</u> la masse m_C de carburant en étant à la <u>vitesse minimale</u> v_{min} .

Q8 – Calculer en km la distance d parcourue pour que l'avion épuise <u>toute</u> la masse m_C de carburant en étant à la <u>vitesse maximale</u> v_{max} .

Q9 – Synthétiser les résultats précédents dans le tableau ci-dessous.

	$v = v_{min}$	$v = v_{max}$	$v = v_{min}$	$v = v_{max}$
	Réservoir interne seul $m_C = $		Réservoirs interne et externe	
			$m_C = $	
d(km)				


Q10 – Reprendre l'équation de la Q4 et exprimer en km la distance d en fonction de la vitesse v en $km \cdot h^{-1}$ en ne considérant **que le réservoir interne** ; préciser les unités de la relation obtenue.

Q11 – Reprendre l'équation de la Q4 et exprimer en km la distance d en fonction de la vitesse v en $km \cdot h^{-1}$ en ne considérant <u>les deux réservoirs</u> ; préciser les unités de la relation obtenue.

Q12 - Tracer sur le DR1 les courbes issues des équations des questions Q10 et Q11.

- $rac{1}{2}$ Identifier la zone où le vol est impossible ($v < v_{min}$).
- $\ \ \,$ Identifier la zone où le vol est impossible ($v>v_{max}$).
- Identifier les abscisses et ordonnées remarquables du tableau de la question Q9.

DR1 : distance en fonction de la vitesse

